
plspec – A Specification Language
for Prolog Data

Philipp Körner and Sebastian Krings

Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

p.koerner@uni-duesseldorf.de krings@cs.uni-duesseldorf.de

Abstract. In general, even though Prolog is a dynamically typed lan-
guage, predicates may not be called with arbitrarily typed arguments.
Assumptions regarding type or mode are often made implicitly, without
being directly represented in the source code. This complicates identi-
fying the types or data structures anticipated by predicates. In conse-
quence, Covington et al. proposed that Prolog developers should imple-
ment their own runtime type checking system.

In this paper, we present a re-usable Prolog library named plspec. It offers
a simple and easily extensible DSL used to specify type and structure
of input and output arguments. Additionally, an elegant insertion of
multiple kinds of runtime checks was made possible by using Prolog
language features such as co-routining and term expansion. Furthermore,
we will discuss performance impacts and possible future usage of these
annotations.

Keywords: Prolog, runtime checks, type system, data specification

1 Introduction

In general, even though Prolog is a dynamically typed language, predicates may
not be called with arbitrarily typed arguments. Assumptions regarding type or
mode are often made implicitly, without being directly represented in the source
code. In general, calling a predicate with an unintended argument might lead to
stack overflows, infinite loops or any kind of undesired behavior. This complicates
identifying the types or data structures anticipated by predicates.

For instance, assume you want to call a Prolog predicate in a newly acquired
library. Documentation reveals that it implements the desired functionality, yet
the call fails. The cause is ambiguous: it could be that the input was as intended,
but no solution exists. Another possibility is that the input is unintended, how-
ever a call to a transformation predicate beforehand would have solved the issue.

Ideally, available documentation can be used to resolve any ambiguities. How-
ever, documentation in natural language has its limits: it cannot convey the en-
tirety of information precisely and often gets outdated when changes are made

to the code. As an example, consider the following excerpt taken from the docu-
mentation of member/2 as implemented in SWI-Prolog [19]: “member(?Element,
?List) is true if Element occurs in the List.”

One issue is that behavior is entirely undefined in case the second argument
is not a list. In consequence, one cannot distinguish between failures such as
member(a, [b,c,d]), where the second argument is a list but does not contain
the element a, and member(a, a), where the second argument is not a list.

In its current implementation, the predicate succeeds even if the second ar-
gument is not a proper list, i. e., a list not terminated by []. In consequence, a
call such as member(a, [a,b|x]) is successful. Judging by the documentation
alone, it remains unclear whether this is intended.

To overcome the limitations of documentation and to gain automatic verifi-
cation, Covington et al. proposed that Prolog programmers should implement
their own ad-hoc runtime type system [3]. Instead, we argue that by making use
of Prolog language features, a simple and easily extensible DSL can be shipped
as a reusable library called plspec.

The library is open source and freely available under MIT license. It can
be downloaded from the GitHub Repository found at https://github.com/

wysiib/plspec. It has been tested with both SWI Prolog and SICStus Prolog.
plspec is heavily influenced by clojure.spec [5], which was recently added to

Clojure. The motivation for clojure.spec is similar to the one for plspec. Both
languages are dynamically typed, often rendering it hard to identify which data
should be passed to functions and what values are returned. Additionally, nested
data structures can be large and confusing to inspect without tool support. Both
libraries enable describing data based on construction out of small and simple
building blocks. clojure.spec utilizes functions as building blocks, while plspec
maintains a database of specifications described by Prolog terms.

In Prolog, we can insert runtime checks in order to distinguish between fail-
ures due to no existing solution, and those where no solution ever could exist
because the input data is not handled at all. Furthermore, we can check whether
variables are bound to invalid values inside of the called predicate. These kinds
of errors might be hidden if the predicate fails later on due to unrelated reasons.
Finally, we can add guarantees that if a predicate was called in a certain way
and succeeds, variables will be bound to data in a specific format.

Note that plspec is more than a simple type checker for Prolog’s type system.
Rather, it can be seen as an additional optional [2] dependent type system:

– plspec does not change the semantics of annotated Prolog programs in any
way.

– plspec’s annotations are entirely optional. In particular, one can only par-
tially annotate predicates.

– Specs may be instrumented in order to take into account runtime values. In
this case, plspec specifications define a system of dependent types.

In the following, we will focus on how plspec’s annotations can be instru-
mented for different types of runtime checks, including traditional contracts [12]
by specifying pre- and postconditions as well as invariants on variables.

https://github.com/wysiib/plspec
https://github.com/wysiib/plspec

2 Usage and Semantics

Our goal is to associate predicates with information regarding type, form and
mode of arguments, most importantly what a valid argument looks like.

In order to describe data, we use so-called specs. A spec is either defined
by a programmer by registering it via an interface predicate, a combination of
multiple existing specs or one of following built-ins.

2.1 Built-in Specs

We implemented most predicates that can be used to examine terms as atomic
specs. These are float, integer, number, atomic, atom, var, nonvar and ground.
To verify that a term matches its spec, we call the built-in Prolog predicates with
the same name, ensuring that these specs bear the common meaning and are
easy to understand. Additionally, we add any to describe any Prolog term.

Furthermore, one can describe non-scalar data using recursive specs. The
spec list(X) is matched if and only if the value is a (potentially empty) list
of elements satisfying the spec X. Lists with a fixed length can be described via
tuple(X), where X is a list of specs which describe the element in that position.
As an example, tuple([integer, atom]) is matched by the value [3, a], but
neither [a, 3] nor [3, a, b].

Compound terms can be described via compound(X), where X is a compound
term with the functor the term shall have. Its arguments have to be specs that
describe what kind of data should be contained in that position of the term. For
example, compound(foo(atom, var)) is matched by foo(bar, X).

Finally, specs can be combined with so-called connectives. So far, built-ins
are and(X) and one_of(X), where X is a list of specs. In the case of and, all specs
have to be matched. For one_of, it is sufficient if at least one spec is fulfilled.

2.2 Preconditions

Preconditions are a way to overcome the problems presented in Section 1. The
idea is that all valid combinations of arguments to a predicate should be enu-
merated by the developer. In Prolog, there are multiple ways to call a predicate
regarding instantiation of variables. However, with preconditions the developer
can clearly state which calls were considered during implementation and testing.

In consequence, when using specs we can be sure that a failure of a predi-
cate with a fulfilled precondition is intended behavior and, analogously, if the
precondition is violated it is a type error.

In order to define a precondition, the interface predicate spec_pre/2 is used.
Apart from the predicate, it takes a list of specs as an argument which can
be understood as the argument vector passed to the predicate. It is allowed to
specify multiple preconditions with the semantics that at least one precondition
has to be matched. Otherwise, the error handler is called. For preconditions, the
value a predicate is called with is passed to the predicate implementing the spec
immediately.

:− p l spec : spec p r e (even pred /1 , [i n t e g e r]) . % the pre cond i t i on
:− enab l e spe c check (even pred / 1) . % instrument ing i t

% f o r runtime checks
even pred (X) :−

0 i s X mod 2 .

?− even pred (0) .
t rue % intended s u c c e s s

?− even pred (1) .
f a l s e % intended f a i l u r e

?− even pred () .
! p l spec : no pr e cond i t i on was matched in even pred /1
! p l spec : s p e c i f i e d p r e c o n d i t i o n s were : [[i n t e g e r]]
! p l spec : however , none o f the se i s matched by : [G1322]
ERROR: Unhandled except ion : p l s p e c e r r o r

Fig. 1. An Example for Preconditions

An example is shown in Fig. 1. We define a predicate even_pred/1 that suc-
ceeds if the parameter is an even integer and fails for odd integers. In particular,
the meaning of the spec is that only integer values are valid parameters. Other-
wise, no guarantees are made whether there is correct behavior in this call, may
it be failure or throwing an exception.

Thus, if we pass a variable to the annotated predicate, we do not get an
exception from is/2 that the arguments are not sufficiently instantiated but
rather a print and an exception from plspec. This standard error handler can be
replaced by a custom one, for example one that calls trace in order to start the
debugger at this particular point in the program.

2.3 Invariants

Invariants have a more sophisticated semantic: intuitively, they specify the data
structures that the predicate should work with. As soon as variables are bound to
a value, they are checked as far as possible according to the spec. If the binding
involves other variables, their check will be delayed until they get bound.

When a variable is bound to anything that cannot satisfy the spec anymore,
the error handler will be called. One can specify invariants via spec_invariant/2.
Again, the second argument is a list of specs with the same interpretation as
above, i. e., for invariants the spec predicate is only called with ground values.

This allows uncovering the kind of programming error shown in Fig. 2: there,
we call the predicate invariant_violator with an anonymous variable. In the
first rule, it will be bound to the list [1]. However, the specification of the
argument to invariant_violator says that it should be atomic if bound. Since
[1] is neither a variable nor atomic, the error handler is called.

:− p l spec : s p e c i n v a r i a n t (i n v a r i a n t v i o l a t o r /1 , [atomic]) .
:− enab l e spe c check (i n v a r i a n t v i o l a t o r / 1) .
i n v a r i a n t v i o l a t o r (X) :−

X = [1] , X == [2] . % f a i l in a s o p h i s t i c a t e d way
i n v a r i a n t v i o l a t o r (a) .

?− i n v a r i a n t v i o l a t o r (a) .
t rue .

?− i n v a r i a n t v i o l a t o r () .
! p l spec : an i n v a r i a n t was v i o l a t e d in i n v a r i a n t v i o l a t o r /1
! p l spec : the spec was : atomic
! p l spec : however , the value was bound to : [1]
ERROR: Unhandled except ion : p l s p e c e r r o r

Fig. 2. An Example for Invariant Violations

If we would not specify this invariant, the first rule would fail since [1] is
not equal to [2]. Thus, Prolog would backtrack into the second rule and bind
the variable to the atomic value a. The invalid binding of X to [1] could not be
determined without reading the source code. In particular, unit tests could never
expose this issue. This kind of programming errors might trigger unintended co-
routines whose effects might be hard to pinpoint.

Invariants are implemented by making use of co-routines. Thus, if the Prolog
implementation does not support this feature, only pre- and postconditions are
available. If the application itself uses co-routines, the effect depends on the
execution order. However, as long as these co-routines do not fail beforehand, it
has no influence on plspec.

2.4 Postconditions

While we ensured correct calls of predicates with preconditions and that variables
are never bound to “incorrect” values with invariants, postconditions are an
important contract that if a certain condition held upon entry of a predicate, a
second condition is implied on success. As for preconditions, the resulting value
is used in order to call the predicate implementing the spec.

In particular, this allows to specify a promise that variables will be bound
to values of a specified type. No promise is made if the predicate fails since no
variables are bound then.

In plspec, one can use one or more instances of spec_post/3 for postcondi-
tions. Apart from the predicate, it takes two lists of specs understood as argu-
ment vectors. The semantic is that if the first list of specs matches when the
predicate is called, the second list of specs has to match if the predicate succeeds.

In Fig. 3, we define two postconditions for an implementation of the member
predicate. The first postcondition guarantees that if the predicate succeeds and

:− spe c po s t (my member/2 , [var , any] , [l i s t (any) , any]) .
:− spe c po s t (my member/2 , [l i s t (i n t) , var] , [l i s t (i n t) , i n t]) .
my member ([H |] , H) .
my member ([|T] , E) :−

my member(T, E) .

Fig. 3. An Example for Postconditions

:− de f spec (t r e e (X) , one o f ([compound (node (t r e e (X) ,X, t r e e (X))) ,
atom (empty)])) .

Fig. 4. A Spec for a Tree of a Given Type

the first argument was a variable, then it will be bound to a list. A different
promise is made in the second precondition: if now the first parameter of the
call is a homogeneous list of type int, the second one is a variable and the
predicate succeeds, then the variable will be bound to a value of type int.

3 Implementation

Specifications which are readable and easy to understand are useful for docu-
mentation purposes without any additional code being executed. In this section,
we will explain how we maintain the spec database, how specs are validated and
how we instrument the annotations described in Section 2 for runtime checks.

3.1 Maintenance and Addition of Specs

Specs are stored in Prolog’s fact database. For simplicity, we distinguish between
different kinds of specs that are handled separately. The reason for this is that
they have different roles. Since plspec was designed with extensibility in mind,
users can define specs themselves and add them to plspec dynamically.

In the following, we present the reason for distinguishing between different
kinds of specs and present each of them. Built-in specs are implemented in the
same way users could implement them without modifying plspec’s source code.

Aliasing defspec/2 allows defining new specs via composing existing ones. The
first argument is an alias for the resulting spec, while the second argument con-
sists of other specs. Recursive specs are allowed. However, they should consume
at least one bit of information of a term in order to avoid infinite loops.

A built-in alias for integer is int. In the database, they are stored as a
dynamic fact that maps the alias to the composition of specs. If an alias is
encountered by the verification predicate, it just looks up its definition and
continues with that spec.

Newly defined specs might also be compound terms which pass information,
e. g., inner specs, to the other specs in form of variables. As an example, Fig. 4
shows how to define a spec for a tree of elements of a given type. A tree is
defined to be either the atom empty or a compound term with the functor node
and three arguments: the first and last argument are trees of the same type,
whereas the middle argument is any value of the given type.

Valid values for tree(int), a tree of integers, include node(empty,1,empty)
and empty. Neither node(empty,not_an_integer,empty), where the middle
value is not of the given type, nor tree(empty,1,empty), where the functor
does not match, are valid.

Verification via Predicates Another option is to implement a spec via a
predicate that succeeds if a value is valid and fails otherwise. This can be achieved
with defspec_pred/2, where the first argument is the new spec and the second
is the predicate used for validation, possibly with some arguments specified.

Again, new specs might be compound terms and pass information to the
predicate. The value that should be checked will always be appended as last
argument to the predicate call.

Note that this implementation of specs is only suitable for values that are
bound in a single unification step. Otherwise, another mechanism should be used
as shown below. As an example, we can reuse the predicate even_pred/1 from
Fig. 1 which tests whether an integer is even or not. In order to use this predicate
as a spec, it can be defined by :- defspec_pred(even, even_pred).

Then, every time the spec even is used, even_pred/1 is called with the value
as argument. If it fails, the value is considered invalid. Since even_pred/1 was
annotated earlier, it will throw an exception if the value is not an integer.

Regarding built-ins, most atomic specs like integer or nonvar are imple-
mented this way. When such a spec is encountered in plspec, the predicate is
simply called with the current value.

Thus, this predicate should not have any side-effects or bind variables used
in the passed term which might fire additional co-routines. In fact, checking
specifications at runtime should not interfere with the execution of the annotated
program in any way. In order to ensure this, we copy each term before using it
to check a plspec annotation. If the spec predicate succeeds, the original term is
compared to its copy. If a variable was bound, an error message will be printed.

Recursive Spec Predicates The third way to define specs is more involved.
If a value is not bound in a single unification step but rather “consumes”
only some part of the value, an appropriate spec can be registered by calling
defspec_pred_recursive/4.

Recursive specs can be implemented based on a predicate verifying a part
of the property, the “consumption” mentioned above. Afterwards, it hands back
control to plspec and exposes new specs and variables that should be checked.

This predicate is the second argument to defspec_pred_recursive/4. It will
be called with all arguments directly wired in the spec definition. Additionally,

the value is passed to the predicate. The last two arguments to that predicate
are two variables. The first variable should be bound to a list of specs and the
second variable to a list of values which might still be variables themselves. plspec
will take these values and check them against the returned specs.

The third argument to defspec_pred_recursive/4 is a predicate which
merges the results of those checks. The basic operations and as well as or already
are implemented and can be used. If a property like “exactly m out of n specs
shall be true” is desired, this predicate has to be implemented by the user.

Finally, the fourth and last argument is the merge predicate which is called
for invariant checks. It has to account for the fact that values might not be fully
instantiated yet. In plspec, this predicate is implemented using co-routines in
order to wait for further instantiation of the data to be verified. and_invariant
as well as or_invariant are already implemented.

Internally, we implemented the checks for compound terms, lists and tuples
like this. The functor of a compound term is immediately checked. Following, the
specs of its arguments and the current values are returned because they might
involve variables that are bound later.

As an example, consider the spec list(int) and the value [1,X|T]. A given
list is deconstructed as far as possible in order to check the outer spec, i. e.,
the value is actually is a list. Then, the inner spec int is repeated for all ele-
ments. Here, we check that both 1 and X are integers. Since X is a variable, this
check is handled by a co-routine that fires once X is bound. In presence of non-
instantiated tails, the outer spec is kept and delayed until further instantiation.
This means, a co-routine is set up that recursively checks that T also matches
the spec list(int). The spec tuple(_) is implemented similarly. In both cases,
the resulting specs need to be merged with and.

Connectives Connectives are specs that do not consume any part of a value.
While they are implemented exactly like the recursive specs above, they are
stored separately. Many connectives might have infinite equivalent specs, e. g.,
int is the same as or([int]) and or([int, int]). Thus, connectives are
avoided when enumerating possible specs for a value.

These kind of specs are registered by calling defspec_connective/4, where
arguments and semantics exactly match those of defspec_pred_recursive/4.

As above, built-in examples are one_of as well as and, which allow specifying
at least one or all specs have to match a value. one_of is implemented with or

as the merge predicate.

3.2 Instrumenting Specifications for Runtime Checks

In order to insert runtime checks for the properties specified in plspec annota-
tions, we make use of term expansion, i. e., source-to-source transformation.

Since annotations can also function as plain documentation, the user can
explicitly state which predicates should be expanded by inserting runtime checks
utilizing the given annotations.

1 my_member(A, B) :-
2 ([[var, list(any)], ...]=[] -> true
3 ; plspec_some(spec_matches([A, B], true), [[var, list(any)], ...])
4 -> true
5 ; error_handler_pre(my_member/2, [A, B], [[var, list(any)], ...])),
6 ([[any, list(any)]]=[C]
7 -> lists:maplist(plspec:invariant_check(my_member/2), C, [D, [E|F]])
8 ; true),
9 [A, B]=[D, [E|F]],

10 plspec:which_posts([[var, any]], [[list(any), any]], [D, [E|F]], G, H),
11 my_member(D, F),
12 lists:maplist(plspec:check_posts([D, [E|F]]), G, H).

Fig. 5. Expanded Recursive Rule

We will explain the term expansion on the example of the second, recursive
rule of our my_member/2 predicate shown in Fig. 3.

Consider Fig. 5: in lines 2–5, we check whether any precondition is specified.
If there is at least one precondition, the plspec_some call will check whether at
least one precondition is satisfied and an error is thrown.

If no precondition was satisfied, no check will be performed. The check will
simple try to conform each spec with each value the predicate was called with.

Afterwards, specified invariant checks are set up in lines 6–8. Note that there
is no call to an error handler yet. Instead, the check and potential error handling
happens inside of co-routines which will be described in more detail later.

The unification with the head of the rule happens in line 9. Note that A and
B in line 1 are fresh variables. Otherwise, if the arguments do not unify with the
head, we would not have an opportunity to catch potential errors there.

In line 10, the premises of the implications stated for postconditions are
verified. Conclusions of the postconditions and whether they hold are checked
again in line 12. The error handling for postconditions is not shown here because
it is part of the check_posts predicate. Between these two steps that verify the
postcondition, the original goal remains in line 11. This ensures the correct values
are used for both parts of the postcondition.

3.3 Co-Routining for Invariants

Invariants are violated as soon as variables are bound to incorrect values. This
can be checked by setting up a number of co-routines.

defspec_pred is a special case of defspec_pred_recursive: it consumes
the entire value in one go without producing new values. The trade-off is that
values for this kind of spec must be bound in a single step. Otherwise, the co-
routine that blocks until the value is not a variable anymore fires on a partially
instantiated term and fails. On the other hand, blocking until a value is ground
does not catch errors where partial instantiation is undesired. This allows easy
implementations because no internal structure of a term has to be exposed.

On the other hand, defspec_pred_recursive produces new specs and new
values. For example, one can bind a variable to a compound term with a given

and_invariant([], [], _, true).

and_invariant([HSpec|TSpec], [HVal|TVal], Location, R) :-

setup_check(Location, ResElement, HSpec, HVal),

and_invariant(TSpec, TVal, Location, ResTail),

both_eventually_true(ResElement, ResTail, R).

both_eventually_true(V1, V2, Res) :-

when((nonvar(V1); nonvar(V2)),

(V1 == true -> freeze(V2, Res = V2)

; nonvar(V1) -> Res = V1

; V2 == true -> freeze(V1, Res = V1)

; nonvar(V2) -> Res = V2)).

Fig. 6. An Implementation of and Based on Co-Routines

functor but bind its arguments later on. These arguments as well as their corre-
sponding specs have to be exposed to plspec, that will set up new co-routines on
them in return. This way, all invalid bindings of variables can be accounted for.

The tricky part is that results of subterms usually only propagate one at a
time. If the third argument of a compound term is bound incorrectly, but the
first argument remains a variable, plspec has to immediately fail. Otherwise, the
first variable might not be bound at all and the error would go unnoticed.

Thus, there is a need for a second merge predicate that is able to deal with
co-routines. An implementation that merges the results with the connective and

is shown in Fig. 6.
The predicate setup_check will set up co-routines in the same way as the

original spec did, using the exposed structure of terms. If the check succeeds,
ResElement is bound to true or, otherwise, an error term containing a reason.

The connective is chained between the results. For example, if the term
foo(1, a, X) is matched against compound(foo(int, atom, var)), the pred-
icate int(1), atom(a), var(X) is formed. Each of the three calls is set up indi-
vidually using its own co-routine. As soon as one fails, the entire formula is false
and all co-routines are terminated by unifications in both_eventually_true.

Analogously, in order to implement or, a single true suffices in order for the
formula to be true and to terminate all co-routines that were set up on the other
disjuncts. Additionally, it has to be propagated when all disjuncts fail in order
to throw an error. However, it is enough to check all alternatives only when we
can determine all of them. Because we only want to raise an error if the entire
disjunction evaluates to false but one alternative cannot be evaluated yet, we
can understand non-termination as “still possible”.

4 Performance Impact

Since all specs are checked at runtime, naturally there is an overhead. In this
section, we discuss which predicates should be annotated by measuring the per-

member(Element, [Element|_Tail]). member_entry(Element, List) :-

member(Element, [_Head|Tail]) :- member(Element, List).

member(Element, Tail).

Fig. 7. Definition of member/2

:- spec_pre(member/2, [any, one_of([var, list(any)])]).

:- spec_invariant(member/2, [any, list(any)]).

:- spec_post(member/2, [any, any], [any, list(any)]).

Fig. 8. Possible Specs of member/2

formance impact caused by the runtime checks of plspec. As a first example, we
consider member/2 that succeeds if the second argument is a list and this list
contains the first argument.

In Fig. 7, the definition of member/2 is shown. Additionally, we define a
predicate member_entry/2 that wraps the member/2 predicate. One could argue,
that valid calls to member/2 should have a list as a second argument. While it
is totally sound that the predicate just fails if the second argument is not a list,
in most cases such a call indicates a programming error somewhere in the code.

Thus, we add annotations to member/2 and, analogously, to member_entry/2

as shown in Fig. 8. The spec_pre directive allows that the element might be of
any type, but the second argument is either a variable or a proper list. Secondly,
spec_invariant ensures that if the second argument is bound, it still has to be
possible for it to become a proper list. Lastly, spec_post guarantees that if the
predicate succeeded for any input, that the second argument will be a proper
list.

:- spec_pre(reverse/3, [list(any), list(any), var]).

:- spec_pre(reverse/3, [var, list(any), list(any)]).

:- spec_invariant(reverse/3, [list(any), list(any), list(any)]).

:- spec_post(reverse/3, [list(any), list(any), var],

[list(any), list(any), list(any)]).

reverse(L, Rev) :-

reverse(L, [], Rev).

reverse([], Acc, Acc).

reverse([H|T], Acc, Rev) :- !,

reverse(T, [H|Acc], Rev).

Fig. 9. Annotated Version of reverse

Table 1. Runtimes and Inference Count of Multiple Kinds of Annotations.

Program Index Runtime (msecs) Inferences

len=10 len=100 len=1000 len=10 len=100 len=1000

member 5 0 0 0 6 6 6
10 0 0 0 11 11 11
50 0 0 0 13 51 51

100 0 0 0 13 101 101
500 0 0 0 13 103 501

1000 0 0 0 13 103 1001

member-entry 5 0 0 3 680 5180 50180
10 0 0 3 685 5185 50185
50 0 0 3 525 5225 50225

100 0 0 3 525 5275 50275
500 0 0 3 525 3945 50675

1000 0 0 3 525 3945 51175

member-recur 5 0 2 22 4036 31216 303016
10 0 4 46 6815 62316 617616
50 0 20 222 6226 254416 3077716

100 0 30 435 6226 352820 6011091
500 0 25 1903 6226 284416 23808091

1000 0 25 2588 6226 284416 31879370

reverse 0 0 0 13 103 1003

reverse-entry 0 0 7 1160 10250 101150

reverse-recur 2 121 11903 15675 1171905 113417205

We consider three benchmark configurations: first, the predicate is not an-
notated with a spec. Second, a spec is applied to the entry point, but not the
recursion Third, the spec is checked in each recursion step.

These calls are made to member/2 with an integer Index and a list of integers
ranging from 1 to N , and to reverse/2 with the same list and a variable.
Additionally, we benchmarked calls to reverse with an accumulator that is
implemented and annotated as in Fig. 9. For the entry level benchmark, we only
annotate reverse/2, dropping the second spec in each of the argument vectors.
Each run is repeated ten times and the median runtime is given.

All benchmarks were run on an Intel(R) Core(TM) i7-7700HQ CPU running
at 2.80GHz We used SWI Prolog version 7.2.3 and configured it to use increased
stack size by starting it with the parameters -G100g -T20g -L2g. Benchmarks
were run sequentially to avoid issues due to scheduling or hyper-threading.

Table 1 depicts the results of the benchmarks. Columns show the length of
the list split by runtime of the query as well as amount of inferences. For the
member predicates, lookups of different indices are benchmarked in each row.

The programs “member” and “reverse” stand for the original predicates with-
out annotations, whereas the suffix “entry” and “recur” distinguish between the
annotation at entry-level and recursion-level respectively.

As depicted in Table 1, for both member and reverse, the amount of addi-
tional inferences and runtime is about constant if only the entry level is anno-
tated. While still growing linearly in size with the list, impact remains reasonable.

However, if the specs are checked in every single recursion step, for member,
the overhead quickly grows linearly in the length l of the list as well as linearly
in the index i that is looked up, causing a quadratic overhead of i ∗ l.

The overhead for reverse actually grows quadratic in the size of l. This is
because in every step, the entire list without its head is validated against the spec
again. We can clearly see that this becomes very slow even if list size increases
moderately and such instrumentation should be avoided.

Since this overhead is enormous, recursive predicates should not be anno-
tated. Instead of checking the same property again and again, one can annotate
an invariant on entry level. Then, the performance impact is barely noticeable.

5 Related Work

The idea of integrating runtime checks based on annotations into Prolog is not
new. Annotating pre- and postconditions has, for instance, been suggested in [9].

In contrast to our approach, the authors extend the usual notion of pre- and
postconditions by annotations attached to the Prolog ports for fail and redo. In
consequence, they work closer to the execution model of the underlying Prolog
interpreter. Furthermore, the author provides the calling context, e. g., the par-
ent predicate, to the specification under test. This allows for more fine-grained
reasoning. Our approach on the other hand provides checking of invariants at
any point of Prolog execution by means of co-routines.

The work around assertion checking in CiaoPP [16], uses abstract interpre-
tation to try to discharge assertions at compile time. Assertions which cannot
be checked statically are performed at runtime, using program transformation.
To our knowledge, CiaoPP only supports Ciao Prolog. While plspec requires co-
routining for its full functionality, pre- and postconditions work with any Prolog
implementation that supports term expansion.

A different approach to testing has been followed in [13]. In contrast to our
approach, the authors do not focus on the introduction of runtime checks into
Ciao Prolog, but rather try to unify unit testing and runtime checking. This way,
only one kind of annotation is needed for different testing purposes. We extend
upon this work by the introduction of invariance annotations and the ability to
use connectives as discussed in Section 3.1. So far, we have not evaluated if we
can extract unit tests from our annotations, but intend to do so.

Documentation of Prolog code has been considered in [18], where the authors
introduce PlDoc, a documentation format used for literate programming. The
corresponding Prolog package has since been included in SWI Prolog. Instead of
integrating documentation into the Prolog code itself, the LATEX package pl [14]

embeds code into the documentation. Using the package, a single source file can
be run both by any LATEX binary and a Prolog interpreter.

Aside of Prolog, other declarative logic programming languages feature com-
parable systems. Mercury [17] includes a type system [7,4] together with a set
of mode annotations [15]. However, the type system implemented in Mercury
differs from the one we suggested: Though it supports higher-order functions, it
neither allows types to be defined by a predicate nor to define a union of two
types. In contrast to plspec, Mercury allows for type variables to be used. This
makes it possible to specify, for instance, that the output of a function will have
the exact same type as the input, regardless of the type itself.

Similar annotations to those in plspec can be found in Erlang’s type specifi-
cation language [8]. These are used, e. g., in the program analyzer Dialyzer [11].
In Erlang, it is only possible to create new types by defining a union of two
existing types, which may be pre-defined or an atomic singleton like the number
42 or the atom foo. As discussed in Section 3.1, plspec allows to define a type
for all values that fulfill a given predicate.

Furthermore, Erlang allows specifying types for higher-order functions which
plspec does not support. Function specifications in Erlang can be regarded as pre-
and postconditions in plspec. Just like Mercury, Erlang supports type variables.

6 Future Work

While plspec is capable of exposing real errors in real world Prolog applications,
several improvements to the library should be made:

– The default error messages have room for improvement. Whenever possible,
the smallest subterm that makes a spec invalid should be included separately.
This allows developers to identify faster and easier what went wrong.

– We can imagine adding further annotations. For example, it can be desired
that co-routines are terminated when a certain predicate succeeds or that
predicates must never fail given their precondition is fulfilled.

– In Section 4, we found that checking annotations of recursive predicates is
very slow. If we added static analysis or used gradual typing, most of that
overhead could be avoided.

Apart from documentation and runtime checks, there are several applications
that could benefit from these annotations and may be subject of future research.

It is desirable that for existing code, one does not have to write specs by hand.
Due to the logic and declarative nature of Prolog, we can easily find matching
specs to a given value by calling the verification predicate with a variable for
the spec. While this allows us to generate a spec for a given value, it is not yet
possible to generate a spec that matches all elements in a series of data.

If this functionality existed, one can think further: with additional tool sup-
port, specs as well as entire contracts could be inferred, for example, simply by
running unit tests that contain only calls which are known to be valid.

Furthermore, some of these annotations could be re-usable for a partial eval-
uator such as logen [10]. An issue with logen is that even though its binding-
time analysis already generates annotations, usually its user has to improve them
manually. Some information that plspec covers, e. g., how predicates are intended
to be called, might reduce the manual work required.

Another area is data generation based on a spec. We could use our annota-
tions to generate arbitrary data featuring a certain structure or other properties.

This could be achieved by linking plspec to existing test frameworks for Prolog
such as [1]. The authors follow an approach to test case generation and shrinking
similar to Erlang’s QuickCheck [6]. However, we would regard test failures as
failing predicates if a spec is matched. In consequence, we would not describe
actual output values in terms of input values.

Besides, often predicates only transform data into a different structure. With
annotations that precisely describe different data structures passed to and re-
turned from a predicate, it might be feasible to both repair incorrect and syn-
thesize new programs solely based on plspec’s annotations.

Finally, plspec could make use of existing annotations, for example mode or
meta-predicate annotations. They could be converted directly into our format.

7 Conclusion

In this paper, we presented the library plspec. It provides a DSL that can be
used to document Prolog predicates in a way that is straightforward. This DSL
is easily extensible without getting involved with internal implementation details
and flexible enough to suit the needs of a broad range of Prolog programs.
Furthermore, these annotations can be used in order to quickly and effortlessly
enable runtime checks if required.

While the performance hit might be too big for recursive predicate, we argue
that, firstly, most checks suffice to be made at the entry level because of the
recursive implementation of specs for recursive data. Furthermore, invariants are
powerful enough to catch incorrect bindings at a deeper recursion level. Secondly,
plspec is a tool intended to catch errors during development. Our runtime checks
should not be deployed as production code and if so, only very carefully.

References

1. C. Amaral, M. Florido, and V. Santos Costa. Prologcheck – Property-Based Testing
in Prolog. In Proceedings FLOPS, volume 8475 of LNCS, pages 1–17. Springer,
2014.

2. G. Bracha. Pluggable Type Systems. In OOPSLA workshop on revival of dynamic
languages, 2004.

3. M. A. Covington, R. Bagnara, R. A. O’Keefe, J. Wielemaker, and S. Price. Coding
Guidelines for Prolog. Theory and Practice of Logic Programming, 12(6):889–927,
Nov. 2012.

4. T. Dowd, Z. Somogyi, F. Henderson, T. Conway, and D. Jeffery. Run Time Type
Information in Mercury. In Proceedings PPDP, volume 1702 of LNCS, pages 224–
243. Springer, 1999.

5. R. Hickey. clojure.spec - Rationale and Overview, 2016. Available at https://

clojure.org/about/spec.
6. J. Hughes. QuickCheck Testing for Fun and Profit. In Proceedings PADL, volume

4354 of LNCS, pages 1–32. Springer, 2007.
7. D. Jeffery. Expressive Type Systems for Logic Programming Languages. Disserta-

tion, Department of Computer Science and Software Engineering, The University
of Melbourne, 2002.

8. M. Jimenez, T. Lindahl, and K. Sagonas. A Language for Specifying Type Con-
tracts in Erlang and Its Interaction with Success Typings. In Proceedings of the
2007 SIGPLAN Workshop on ERLANG, ERLANG ’07, pages 11–17. ACM, 2007.

9. M. Kulaš. Annotations for Prolog – A Concept and Runtime Handling. In Pro-
ceedings LOPSTR, volume 1817 of LNCS, pages 234–254. Springer, 2000.

10. M. Leuschel, S. J. Craig, M. Bruynooghe, and W. Vanhoof. Specialising interpreters
using offline partial deduction. In Program Development in Computational Logic,
pages 340–375. Springer, 2004.

11. T. Lindahl and K. Sagonas. Detecting Software Defects in Telecom Applications
Through Lightweight Static Analysis: A War Story. In Proceedings APLAS, volume
3302 of LNCS, pages 91–106. Springer, 2004.

12. D. Mandrioli and B. Meyer. Design by Contract. Advances in Object-Oriented
Software Engineering, page 1, 1991.

13. E. Mera, P. Lopez-Garćıa, and M. Hermenegildo. Integrating Software Testing and
Run-Time Checking in an Assertion Verification Framework. In Proceedings ICLP,
volume 5649 of LNCS, pages 281–295. Springer, 2009.

14. G. Neugebauer. pl – Literate Programming for Prolog with LATEX, 1996. Available
at https://www.ctan.org/pkg/pl, version 3.0.

15. D. Overton. Precise and Expressive Mode Systems for Typed Logic Programming
Languages. Dissertation, Department of Computer Science and Software Engineer-
ing, The University of Melbourne, 2003.

16. G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Proceedings LOP-
STR, volume 1817 of LNCS, pages 273–292. Springer, 2000.

17. Z. Somogyi, F. J. Henderson, and T. C. Conway. Mercury, an Efficient Purely
Declarative Logic Programming Language. In Proceedings ASCS, pages 499–512,
1995.

18. J. Wielemaker and A. Anjewierden. PlDoc: Wiki style Literate Programming for
Prolog. CoRR, abs/0711.0618, 2007.

19. J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog. Theory and
Practice of Logic Programming, 12(1-2):67–96, 2012.

https://clojure.org/about/spec
https://clojure.org/about/spec
https://www.ctan.org/pkg/pl

	plspec – A Specification Languagefor Prolog Data

